
UNIVERSIDADE ESTADUAL DO CEARÁ

CENTRO DE CIÊNCIAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO ACADÊMICO EM CIÊNCIA DA COMPUTAÇÃO

ALEX FERREIRA RAMIRES TRAJANO

BALANCEAMENTO DE CARGA DE CACHES DE IMKVS

FORTALEZA – CEARÁ

2016

ALEX FERREIRA RAMIRES TRAJANO

BALANCEAMENTO DE CARGA DE CACHES DE IMKVS

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Ciência da Computação do
Programa de Pós-Graduação em Ciência da
Computação do Centro de Ciências e Tec-
nologia da Universidade Estadual do Ceará,
como requisito parcial à obtenção do título de
mestre em Ciência da Computação. Área de
Concentração: Ciência da Computação

Orientador: Prof. Dr. Marcial Porto Fer-
nandez

FORTALEZA – CEARÁ

2016

Dados Internacionais de Catalogação na Publicação

 Universidade Estadual do Ceará

 Sistema de Bibliotecas

Trajano, Alex Ferreira Ramires.
 Balanceamento de carga de caches de IMKVS
[recurso eletrônico] / Alex Ferreira Ramires Trajano.
– 2016.
 1 CD-ROM: il.; 4 ¾ pol.

 CD-ROM contendo o arquivo no formato PDF do
trabalho acadêmico com 63 folhas, acondicionado em
caixa de DVD Slim (19 x 14 cm x 7 mm).

 Dissertação (mestrado acadêmico) – Universidade
Estadual do Ceará, Centro de Ciências e Tecnologia,
Mestrado Acadêmico em Ciência da Computação,
Fortaleza, 2016.
 Orientação: Prof. Ph.D. Marcial Porto Fernandez.

 1. Caching. 2. Balanceamento de Carga. 3.
Datacenter. I. Título.

Dedico a todos que acreditam que ciência pode

ser feita por qualquer pessoa, em qualquer lugar,

até mesmo debaixo de um cajueiro...

AGRADECIMENTOS

Agradeço à minha família, sobretudo meus pais, Rosana e Francisco, por desde muito cedo

terem me incentivado aos estudos, por terem me proporcionado um ambiente em que eu pudesse

me desenvolver como pessoa, cidadão e profissional, apesar das poucas condições que tiveram

acesso no passado. Não fosse a certeza deles de que a educação seria fundamental no meu

desenvolvimento, talvez eu não tivesse a oportunidade de estar onde estou e de construir esse

trabalho. Também agradeço ao meu irmão, Davi, que me suportou durante todo o período em

que eu precisei usar três computadores e todo o nosso link de "banda larga" para desenvolver

esse trabalho :).

Agradeço à minha namorada, conselheira e melhor amiga, Morgana, que pôde compreender a

minha ausência nos períodos em que tive que desenvolver este trabalho, além de ter suportado

todo o stress do mundo. Ela foi a maior responsável por ter me dado uma nova visão do mundo,

visão essa que ajudou o meu crescimento pessoal e profissional. Os últimos 4 anos foram os

melhores de minha vida graças a ela. Muito obrigado por tudo, o mérito por esse trabalho

também é seu!

Agradeço ao meu orientador, Prof. Marcial, por ter me dado a confiança e a liberdade que foram

extremamente fundamentais para produzir esse trabalho. Graças a sua atuação bastante precisa,

pude me desenvolver como pesquisador e também pude conhecer um pouco mais desse mundo

em que vivemos. Obrigado ao Prof. Celestino, que, em sala de aula, me apresentou uma visão

diferente de como aprender e criticar novas tecnologias. Sou grato aos professores do MACC

que me ajudaram a obter o conhecimento necessário para que eu possa deixar minha contribuição

à humanidade.

Agradeço aos colegas de trabalho, Alexandre, Jackson, Rubens, João Paulo e Alan, que, mesmo

sem saber, puderam contribuir para o desenvolvimento desse trabalho. As longas discussões

arquiteturais do nosso sistema foram de suma importância para muitas decisões de projeto dos

trabalhos que venho desenvolvendo. Obrigado pela confiança da Trixlog em me ceder algumas

horas para a dedicação ao mestrado.

Agradeço a todos amigos que participaram dos momentos dessa fase importante de minha vida.

Afinal, de que servem as conquistas sem alguém pra compartilhar?

“There is a huge need and a huge opportunity to

get everyone in the world connected, to give eve-

ryone a voice and to help transform society for

the future. The scale of the technology and infra-

structure that must be built is unprecedented, and

we believe this is the most important problem

we can focus on.”

(Mark Zuckerberg)

RESUMO

Redes sociais e outros tipos de aplicações em nuvem requerem respostas rápidas da infraestrutura

de seus datacenters. Uma das técnicas que tem sido amplamente utilizada para alcançar tal

requisito é o emprego de In-Memory Key-Value Storage (IMKVS) como mecanismo de caching,

a fim de melhorar a experiência do usuário. Memcached e Redis são dois exemplos de aplicações

que seguem a abordagem IMKVS. Geralmente, clientes de IMKVS utilizam Consistent Hashing

para escolher onde armazenar um determinado objeto, o que pode causar desbalanceamento

da carga na rede de computadores. Além do mais, tais clientes operam apenas na camada

de aplicação, o que faz com que as condições da rede de computadores não seja levada em

consideração enquanto distribuindo as requisições dos usuários. Este trabalho tem como objetivo

propor uma nova arquitetura de caching em que é utilizado um balanceamento de carga em duas

fases a fim de melhorar a performance de caches IMKVS. Tal arquitetura faz uso extensivo dos

conceitos de Software-Defined Networking e Network Function Virtualization para gerenciar o

mecanismo de balanceamento de carga. A proposta foi avaliada no Mininet, uma ferramenta

de emulação de redes de computadores, e os resultados mostram que a proposta melhora o

desempenho geral do sistema, ajudando a reduzir os custos operacionais das redes de datacenter.

Palavras-chave: Caching. Balanceamento de Carga. Datacenter.

ABSTRACT

Social networks and other clouding applications should require a fast response from datacenter’s

infrastructure. One of the techniques that has been widely used for achieving such requirements

is the employment of In-Memory Key-Value Storage (IMKVS) as caching mechanisms in order

to improve overall user experience. Memcached and Redis are applications that use IMKVS

approach. Commonly IMKVS clients use Consistent Hashing to decide where to store an object,

which may cause network load imbalance. Furthermore, these clients work only at the application

layer, so network conditions are not considered to distribute user’s accesses. This paper proposes

a new cache architecture with two phases load balancing to improve IMKVS performance, which

has adopted the Software-Defined Networking and Network Function Virtualization concepts to

design an architecture to manage the load balancing mechanism. The proposal was evaluated in

the Mininet emulation environment and shows an improvement on load balancing, helping to

reduce operational costs of datacenter networks.

Keywords: Caching. Load Balancer. Datacenter.

LIST OF FIGURES

Figure 1 – The OpenFlow architecture . 22

Figure 2 – The OpenFlow Flow Entry . 22

Figure 3 – The NFV architectural components proposed by ETSI 24

Figure 4 – Two cached objects on a Consistent Hashing ring 27

Figure 5 – The "look aside" strategy used to fill Memcached caches 29

Figure 6 – Facebook’s servers architectural overview 29

Figure 7 – An arbitrary deployment scenario for the two-phase load balancing 33

Figure 8 – Network communication while forwarding IMKVS traffic 34

Figure 9 – uLoBal architectural modules . 35

Figure 10 – kvsKeeper architectural components on two VMs 43

Figure 11 – Facebook’s "4-post" network topology . 49

Figure 12 – Network Topology for the uLoBal experiments 51

Figure 13 – SDN load balancing compared to a traditional SPF forwarding strategy . . . 53

Figure 14 – Message delivery delay when using SDN load balancing modes 54

Figure 15 – Servers load levels when using SDN load balancing modes 55

Figure 16 – IMKVS commands execution time comparison 55

Figure 17 – Execution time of mget command with multiple kvsKeeper instances 56

Figure 18 – Servers and network loads comparison . 57

LIST OF TABLES

Table 1 – uLoBal API methods and parameters . 36

Table 2 – uLoBal operational modes . 37

LIST OF ALGORITHMS

Algorithm 1 – Consistent Hashing . 27

Algorithm 2 – PacketIn handling algorithm . 38

Algorithm 3 – RR algorithm . 39

Algorithm 4 – IPH algorithm . 39

Algorithm 5 – NSL algorithm . 40

Algorithm 6 – Dispatcher’s set algorithm . 45

Algorithm 7 – Dispatcher’s get algorithm . 46

Algorithm 8 – Dispatcher’s mget algorithm . 46

Algorithm 9 – Dispatcher’s delete algorithm . 46

Algorithm 10 – gBstSrv procedure . 47

Algorithm 11 – Replication algorithm . 48

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

CAN Content Addressable Network

CDN Content Delivery Network

CH Consistent Hashing

CPU Central Processing Unit

DHT Distributed Hash Table

ETSI European Telecommunications Standards Institute

ForCES Forwarding and Control Element Separation

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IMKVS In-Memory Key-Value Storage

IPH IP Hashing

LRU Last Recently Used

NAL Network-Assisted Lookups

NAT Network Address Translation

NETCONF Network Configuration Protocol

NFV Network Functions Virtualization

NFVI NFV Infrastructure

NFVMANO NFV Management and Orchestration

NSL Network and Server Load

P2P Peer-to-Peer

QoE Quality of Experience

REST Representational State Transfer

RR Round-Robin

SDN Software-Defined Network

SPF Shortest Path First

VM Virtual Machine

VNF Virtualized Network Function

LIST OF SYMBOLS

δ uLoBal network path cost

ζ Available bandwidth percentage of a network enlace

ν Percentage of transmission errors of a network enlace

γ kvsKeeper instance load

ε Available Central Processing Unit (CPU) percentage

ξ Available memory percentage

η Available network interface bandwidth percentage

CONTENTS

1 INTRODUCTION . 16

1.1 PROPOSAL . 18

1.2 CONTRIBUTIONS . 19

1.3 WORK STRUCTURE . 19

2 BACKGROUND . 21

2.1 SOFTWARE-DEFINED NETWORKING 21

2.2 NETWORK FUNCTION VIRTUALIZATION 24

2.3 CONSISTENT HASHING . 25

2.4 IN-MEMORY KEY-VALUE STORAGES 28

3 RELATED WORKS . 30

3.1 LOAD BALANCING ON SOFTWARE-DEFINED NETWORKS 30

3.2 LOAD BALANCING OF IN-MEMORY KEY-VALUE STORAGES 31

4 TWO-PHASE LOAD BALANCING OF IMKVS CACHES 33

4.1 ULOBAL: ENABLING GENERIC LOAD BALANCING ON SDN 35

4.1.1 Management Module . 36

4.1.2 Network Monitoring Module . 37

4.1.3 Load Balancer Module . 37

4.2 KVSKEEPER: ON THE LOAD BALANCING OF IMKVS 40

4.2.1 Architectural Components . 42

4.2.2 Index . 43

4.2.3 Dispatcher Module . 44

4.2.4 Replication Module . 47

5 EVALUATION . 49

5.1 EXPERIMENT 1 . 50

5.2 EXPERIMENT 2 . 51

5.3 EXPERIMENT 3 . 51

5.4 EXPERIMENT 4 . 52

6 RESULTS . 53

6.1 EXPERIMENT 1 . 53

6.2 EXPERIMENT 2 . 55

6.3 EXPERIMENT 3 . 56

6.4 EXPERIMENT 4 . 57

7 CONCLUSION AND FUTURE WORK 58

Bibliography . 60

16

1 INTRODUCTION

Traditional small web sites often rely on a web server software and a database that

are hosted on the same physical server, which means that most of the network communication is

the user traffic coming from the Internet. However, recent cloud applications like social networks

are accessed by hundreds of millions of users every day, imposing computational, network and

I/O demands that a traditional architecture would struggle to satisfy. In order to support the

massive workloads related to such applications, it is necessary to design scalable and reliable

infrastructures that are able to provide the resources and the technology for processing millions

of user requests per second.

Most of cloud applications must allow near real-time communication, while aggre-

gating content on-the-fly from multiple sources whose access cost may be high. Besides, it is

necessary to provide access to popular shared content. Facebook, for instance, has a deployment

scenario where a front-end web server is responsible for deliver requested content to users

through Hypertext Transfer Protocol (HTTP). These servers must handle the requests and fetch

data from different cache, databases and back-end servers in order to render the final web page.

It has been reported that a single HTTP page request required 88 cache lookups (consuming

648 KB), 35 database lookups (consuming 25.6 KB) and 392 back-end remote calls (consuming

257 KB), taking just a few seconds to the page be completely loaded on the user’s screen

(FARRINGTON; ANDREYEV, 2013).

In order to support the storage and the processing of large amounts of data, many

cloud applications have adopted a simple but effective caching infrastructure that rely on In-

Memory Key-Value Storage (IMKVS). These simple storages are able to provide fast access to

any type of data that can be mapped by a key. Its in-memory placement of data helps to avoid

slow and expensive access to persistent storages on disk. Thus, IMKVS is often used to store

and supply information that is cheaper to cache than to re-obtain, such as commonly accessed

results of database queries or the results of complex computations. Several IMKVS cache imple-

mentations have been developed and deployed in large scale cloud services, including Dynamo

at Amazon (DECANDIA et al., 2007); Redis at GitHub, Digg, and Blizzard (SANFILIPPO;

NOORDHUIS, 2016); Memcached at Facebook, Zynga, and Twitter (FITZPATRICK, 2004);

and Voldemort at LinkedIn (SUMBALY et al., 2012). Facebook has reported that there are tens

of thousands of Memcached instances operating on their datacenters (NISHTALA et al., 2013).

These simple applications are basically Hash Maps capable of storing any kind

17

of data mapped by an unique key, usually a string of variable length. IMKVS can be used

to form huge caching layers designed to operate in a distributed and independently fashion

over unstructured networks, being an important component on the architecture of applications

with diverse load levels. In such deployments, the IMKVS instances do not know about the

existence of other IMKVS instances, making their clients applications to manage all aspects of

data partitioning and load balancing.

Most of IMKVS clients Application Programming Interface (API) use a technique

called Consistent Hashing (CH) (KARGER et al., 1997). It consists in distributing a set of keys

uniformly among a set of servers in such a way that neither servers addition nor removal causes

large impacts on the keys distribution, also avoiding the creation of hot spots in the network.

CH has been used successfully in several kinds of applications, like caching (NISHTALA et al.,

2013) and storage (LAKSHMAN; MALIK, 2010). Although CH is a very efficient technique, it

is, basically, a special hash function that uses a key and a set of servers to select where to store

data. However, it may incur load imbalance in large production networks, producing hot spots,

since CH does not consider any environmental aspect, object’s characteristics, congestion nor

object’s popularity while distributing objects.

Moreover, the growing complexity and workload of current computer networks often

require large infrastructure investments in order to support new demands. However, it is not

feasible to increase the network capacity at the same rate as the demand grows, requiring a set of

techniques that aims a more efficient use of network resources. One of the most-used techniques

is to perform load balancing, either by application layer algorithms or network orchestration, in

order to optimize network traffic.

In fact, over the last years, it has been common to find specialized hardware appli-

ances or applications capable of performing traffic load balance of specific types of service.

Nevertheless, the load balancing task should not be coupled to specialized infrastructure items,

since it should be an embedded feature of the network itself in order to ensure maximum per-

formance. In-network load balancing is a way of providing more flexibility and near optimal

performance. Besides, there is a wide set of Internet services that can be boosted using an in-

network load balancing technique, which opens the opportunity for developing generic solutions

focused on the adherence to current and future services at no cost.

Over the last few years, Network Functions Virtualization (NFV) (HAN et al., 2015)

has been becoming one of the most promising study areas for developing new computer network

18

technologies and architectures. NFV poses a novel way to develop network services, by using

software and virtualization aiming the replacement of proprietary hardware appliances that

run network functions, like Network Address Translation (NAT), Intrusion Detection System

(IDS), caching, etc. In NFV, these services, called Virtualized Network Function (VNF), are

implemented through software and deployed in Virtual Machine (VM)s, allowing new and

efficient ways of network deploying. It also allows customization and real time management of

such services, enabling a tremendous cost saving and more agility to serve the daily changes that

every computing network is susceptible.

Simultaneously with NFV, another networking approach that has been gaining

space is the Software-Defined Network (SDN) (KREUTZ et al., 2015). SDN allows network

management by creating an abstraction of the lower-level functionalities of the networking,

by separating the control plane (decision making) from the data plane (forwarding). SDN is

often confused with OpenFlow (MCKEOWN et al., 2008) since it is the most popular and

promising SDN protocol. OpenFlow, beyond have the data and control planes separated, have a

centralized architecture that simplifies the development of different kinds of network services,

which consists in creating a unique programmable controller that can be deployed to commodity

servers, maintaining TLS channels to all switches within the network, programming all aspects

of packet forwarding of the network. Although SDN and NFV have many common aspects, both

are neither competitors nor conflicting. When both are used together, the whole network tends to

benefit from it, since it has the best aspects of data and control plane separation coexisting with

the virtualization power, allowing a more efficient control of the network. SDN contributes to

better traffic orchestration while NFV focuses on service delivery.

1.1 PROPOSAL

Since the major issue of CH is not taking any envorinmental metric into account, it

is needed to develop a new technique that is able to perform load balancing of IMKVS requests.

This technique must be capable of truly load balance the datacenter network traffic, in such a way

that the IMKVS servers will handle the incoming traffic according to its current load state. In

order to do that, this work proposes a two-phase load balancing mechanism that make intensive

use of VNFs to manage IMKVS traffic dynamically over the network, providing a scalable and

resilient alternative to CH. This mechanism is divided into two modules, uLoBal and kvsKeeper,

being each one responsible for a specific task at a specific placement on the network.

19

The first phase of the load balancing happens on the SDN controller, through the

use of uLoBal, a system capable of dynamically load balance arbitrary services through the use

of different forwarding approaches. The second phase is made by kvsKeeper, a VNF that can

be deployed in multiple VMs spread over the network, being responsible for decide where to

forward IMKVS packets and performing orchestration on the data. Futhermore, kvsKeeper is

also capable of replicate highly popular data, helping to mitigate the appearance of hot spots

over the network.

The main idea is to use the SDN controller to select the best VM that executes

a kvsKeeper process and forward the incoming IMKVS packets to there. Once a kvsKeeper

process receives the traffic, it will decide to which IMKVS server the incoming packets should

be forwarded, according to network and server metrics and based on an index shared across the

kvsKeeper VMs. Both uLoBal and kvsKeeper select the best destination to forward requests

by considering the load on both network and the available servers, helping to reduce the load

created by new requests.

By load balancing the traffic in two phases considering the load on network and

servers and replicating popular data across multiple servers, it is expected that the two-phase

mechanism outperforms CH yet improving the use of expensive datacenter resources.

1.2 CONTRIBUTIONS

During the research process of this work, two related papers were published.

The first, presented at the 20th IEEE Symposium on Computers and Communications

(ISCC), was the preliminary work about the two-phase load balancing technique employed on

IMKVS systems that is presented here (TRAJANO; FERNANDEZ, 2015).

The second, presented at the 15th International Conference on Networks, was de-

veloped as an abstraction of the first, proposing an generic load balancer for arbitrary Internet

services (TRAJANO; FERNANDEZ, 2016).

1.3 WORK STRUCTURE

The rest of this work is structured as follows. In Chapter 2, it is presented the

background concepts used in the work. Chapter 3 shows some related works about SDN load

balancing and IMKVS load balancing. Chapter 4 presents the load balancing architecture. In

20

Chapter 5, the experimental scenarios are described and in Chapter 6 the results are presented.

Finally, Chapter 7 concludes the work and some future research is described.

21

2 BACKGROUND

In this Chapter the concepts related to this work are going to be presented. In Section

2.1 the Software-Defined Networking will be introduced in conjunction with the OpenFlow

protocol and its architecture. Then, in Section 2.2, the proposed architecture for Network

Function Virtualization will be presented and in Section 2.4 the In-Memory Key-Value Storages

will be shown. Finally, in Section 2.3, the Consistent Hashing approach will be discussed.

2.1 SOFTWARE-DEFINED NETWORKING

SDN is an approach to network control and management that allow administrators

to manage network services by an abstraction of lower network protocol functions. This is

done by decoupling the control plane, that takes decisions about forwarding traffic through

the network infrastructure; from the data plane, the users traffic itself. The objective is to

simplify the network control in high speed traffic. SDN requires a protocol for the control

plane that is able to communicate with devices. The most known protocol is the OpenFlow,

often misunderstood to be equivalent to SDN, but other protocols could also be used, such

as Forwarding and Control Element Separation (ForCES) (DORIA et al., 2010) and Network

Configuration Protocol (NETCONF) (ENNS et al., 2011). In our work, we will consider only

the OpenFlow architecture.

OpenFlow has two main components: the controller, an unique programmable remote

control, and the network devices. These two components work together through the OpenFlow

Protocol. The main idea is to keep network devices as simple as possible in order to reach

better forwarding performance, having no complex decision-making process within the devices,

delegating such a task to the network controller. Figure 1 shows how these components are

organized on the OpenFlow architecture.

The OpenFlow Controller is the centralized controller of an OpenFlow network. It

sets up all OpenFlow devices, maintains topology information and monitors the overall status of

entire network. The OpenFlow Device is any OpenFlow-enabled device in a network, such as a

switch, router or access point. Each device maintains a Flow Table that indicates the processing

that must be applied to any packet of a certain flow. The OpenFlow Protocol works as an interface

between the controller and the switches, setting up the Flow Table and exchanging information

about the network state. The controller updates the Flow Table by adding and removing Flow

22

Figure 1 – The OpenFlow architecture

Source: MCKEOWN et al., 2008

Entries using the OpenFlow Protocol. The Flow Table is a database that contains Flow Entries

associated with a set of actions that commands the switch for apply these set of actions on the

packets of a certain flow. Some possible actions are: forward, drop and encapsulate. Figure 2

shows the structure of a Flow Entry.

Figure 2 – The OpenFlow Flow Entry

Source: Open Networking Foundation, 2015

Each OpenFlow device has a Flow Table with Flow Entries. A Flow Entry has three

fields: Rule, Action and Stats. The Rule field is used to define the set of conditions to characterize

the packets that will match that specific flow. The Action field defines the set of actions that must

be applied to a packet if it matches the conditions defined on the Rule field. The Stats maintains

a set of counters that are used to monitor flow’s statistics, which can be used for management

purposes. Each incoming packet is matched against the entries of the Flow Table. If a set of Flow

23

Entries matches a packet, the device will select the entry with the highest priority and the actions

defined on the entry will be executed, having its statistics updated at the end of the process. If

there is no matching entry for an incoming packet, the device sends a PacketIn message to the

controller, wrapping the unmatched packet.

Once the controller receives a PacketIn message, it can take some actions on that

packet, such as send FlowMod messages to the network devices in order to install new flow

entries that match the incoming packet, or send a PacketOut message to "manually" forward the

packet, or even ignore that packet. Besides, the controller can send messages to query statistics

on every OpenFlow-enabled device within its network. An example is the StatsRequest message,

which aims to query flow, port or queue statistics at the devices, which is useful for determining

the current state of the network. Each StatsRequest message is sent asynchronously, so the

controller must listen for a StatsResponse message that will gather the requested data.

The Openflow Controller presents two operational behaviors: reactive and proactive.

In the reactive approach, the first packet of flow received by a device triggers the controller

to insert flow entries in each OpenFlow switch of network. This approach presents the most

efficient use of existing flow table memory, but every new flow incurs in a small additional

setup time. This approach may turn the devices highly dependant on the controller, since if the

connection between a device and the controller is lost, such device would have limited utility.

On the other hand, the proactive approach is based on the fact that the controller pre-populates

the Flow Table of each switch on the network. This approach has zero additional flow setup time

because the forward rule has already been defined. Now, if the switch loss the connection with

controller it does not disrupt traffic. However, the network operation requires a hard management,

since it would be necessary to aggregate rules to cover all routes, for instance. Both reactive and

proactive behaviors can be used simultaneously according to business needs.

The controller performance is a central issue of an OpenFlow architecture. A

controller can support only a limited number of flow setups per second. The work (TAVAKOLI

et al., 2009) shows that a single NOX controller can handle a maximum of 30K flow setup

per second maintaining a flow install time below 10 ms. From the network side, the work

(KANDULA et al., 2009) has measured the creation of 100K flows per second in a 1500-server

cluster datacenter, implying a need for, at least, four OpenFlow controllers.

Several approaches have proposed new OpenFlow Controller architectures and

implementations. One of the first approaches was the NOX Controller (GUDE et al., 2008),

24

a centralized controller that implements a reactive and proactive approach. The Floodlight

(ERICKSON, 2012) is Java-based OpenFlow Controller, forked from the Beacon controller

developed at Stanford. The Floodlight controller is an open-source software Apache-licensed,

supported by a community of developers. It offers a modular architecture that makes easy to

extend and enhance.

2.2 NETWORK FUNCTION VIRTUALIZATION

NFV offers a new network architecture to design, deploy and manage network

functions and services in a virtualized infrastructure. NFV decouples the network functions,

such as firewalls, intrusion-detection systems, load balancers, Network Address Translation

(NAT), etc., from proprietary dedicated hardware appliances. It is designed to deploy networking

components to support a virtualized infrastructure, including virtual machines, servers, storage,

etc. The basic idea was proposed in 2012 by a group from the European Telecommunications

Standards Institute (ETSI). The ETSI proposal for NFV is based on three key components: NFV

Infrastructure (NFVI), VNF and NFV Management and Orchestration (NFVMANO). Figure 3

shows how these components are organized.

Figure 3 – The NFV architectural components proposed by ETSI

Source: MIJUMBI et al., 2015

NFVI is composed by the hardware and software necessary to build the environment

25

where the VNF will be deployed. Usually, the resources used on NFVI rely on commercial-

off-the-shelf hardware, which helps to reduce cost and increase flexibility. Virtualization is the

key concept of NFV, so the network functions are deployed on VMs, which are instantiated

on the physical hardware resources that compose the NFVI. In other words, the NFVI is the

infrastructure behind the virtualized resources (MIJUMBI et al., 2015).

VNF is the functional component of the NFV architecture. A network function is a

component that has well defined external interfaces and well defined functional behavior within

the network. Firewalls, NAT, load balancers and IDS are some examples of network functions.

Thus, a VNF is a network function that was developed to be deployed on the virtualized resources

provided by the NFVI. The VNF deployment scenarios are extremely flexible, allowing the

network to work with as many VM instances as needed, allowing better scalability and easier

management, following diverse business needs and user constraints (MIJUMBI et al., 2015).

NFVMANO is the NFV component responsible for providing the mechanisms that

handle the management and orchestration of both infrastructure and network functions. The tasks

related to configuration, resource allocation, provisioning, lifecycle management, monitoring

and storage of data models are all performed by the NFVMANO. Furthermore, it also also can

provide an user interface and expose an API to enable service integration with other softwares

over the network (MIJUMBI et al., 2015).

NFV is a complementary approach to SDN. While both intend to manage networks,

they rely on different point of view. While SDN separates the control and forwarding planes

to offer a centralized view of the network, NFV focuses on implement network services on a

unique network configuration infrastructure, e.g., based on SDN. There are inherent benefits

in leveraging SDN to implement a NFV infrastructure. Basically, when we were looking the

management and orchestration of VNF features in a multi-vendor SDN infrastructure.

2.3 CONSISTENT HASHING

Consistent Hashing arose from the limitations that were observed in web caches

(KARGER et al., 1997). One of its main objectives is to avoid the presence of hot spots on the

network, which may lead the network to congest and services to be unavailable for users. The

concept of hot spot has been defined by Karger et al. as:

Hot spots occur any time a large number of clients wish to simultaneously
access data from a single server. If the site is not provisioned to deal with all

26

of these clients simultaneously, service may be degraded or lost. Many of us
have experienced the hot spot phenomenon in the context of the Web. A Web
site can suddenly become extremely popular and receive far more requests in
a relatively short time than it was originally configured to handle. In fact, a
site may receive so many requests that it becomes “swamped,” which typically
renders it unusable. Besides making the one site inaccessible, heavy traffic
destined to one location can congest the network near it, interfering with traffic
at nearby sites (KARGER et al., 1997).

In that context, it is common to distribute a set of objects to several cache servers in

order to balance access load to different network segments. An object is any kind of data that is

used to serve users requests, so, it could be from HyperText Markup Language (HTML) files to

large database queries results.

An well known technique for objects distribution is to use a hashing function and a

modulo operation. The objective is to evenly store the objects on servers, by only considering

the number of servers available on the network. To describe the technique, let O be an arbitrary

object and n the amount of available servers on the network. The result of (2.1) maps O to the

i-th available server Si.

i = hash(O) mod n (2.1)

This solution works satisfactorily if the set of available servers does not change over

time. When either inclusion or exclusion of servers occurs, it is necessary to remap all objects

to the new set of servers, since n has changed. In a production environment, it could cause a

massive increase on network traffic.

In order to avoid such problems, CH is an alternative capable of evenly distribute an

object set to a server set in such a way that neither addition nor removal events could cause a total

cache remapping. When a new server is added to the caching layer, the objects of its neighbors

are shared with the new server. When a removal happens, the server’s objects are shared back

with its neighbours. This approach minimizes the impacts caused by network changes, by making

local changes within the caching layer, avoiding a complete object redistribution on these events.

The way CH can do that is by using a hash function on both objects and servers, mapping an

object to a range of servers, then selecting one of these servers to store the data. The basic idea

is shown in Algorithm 1.

Following the Algorithm 1 with an arbitrary hash function, Figure 4 shows an

example of how two random objects would be mapped to some caching servers. O1 would be

27

Algorithm 1: Consistent Hashing
Data: A server set Cs, an object O and a hash function H
Result: A server S that O must be stored
Initialize a circular list L;
foreach server S in Cs do

Hsv := H(S);
T := {h : Hsv, s: S};
insert T into L;

end
sort L based in T.h values;
Hov := H(O);
if L contains any T.h = Hov then

return T.s;
end
else

insert Hov into L in a sorted fashion, comparing Hov against T.h values;
return the Hov rightmost T.s value;

end

mapped to S2 and O2 to S3. If S3 were removed from the caching layer, O2 would be mapped

to S1 or S4 because they are the current S3 neighbours. If S5 were added to the ring, and it was

placed in between S2 and S4, the objects held by them would be shared with S5.

Figure 4 – Two cached objects on a Consistent Hashing ring

Source: The author

Since CH shows great results in object distribution across several servers (KARGER

et al., 1997), it is important to notice that it does not take everything into consideration that can

cause network hot spots. Datacenters handle a huge amount of objects in order to serve either

user and application complex requests (NISHTALA et al., 2013), thus any algorithm that aims to

reduce the probability of emerge a hot spot have to take both network’s indicators and objects’

28

characteristics into consideration while distributing objects to servers.

2.4 IN-MEMORY KEY-VALUE STORAGES

As said before, Memcached and Redis are two examples of IMKVS. These softwares

behave as simple Hash Maps, by mapping content through keys. There are some IMKVS that

offers a more robust API, being more than a simple map data structure, since they are able to

either perform manipulation within the caching layer or store nested data structures, though the

basic functionality is the Key-Value relationship (FITZPATRICK, 2004). The basic commands

that can be executed in these applications are described as follows 1:

void set (key, value) Ask a specific server to store a given value identified by a given key.

value get (key) Retrieve the value identified by the given key stored in a specific server. If there

is no value associated to the key, then null is returned and a miss happens.

value[] mget (key[]) Retrieve the values identified by the given keys that are stored in a specific

server. If there is no value associated to one of the keys, then a null is included into the

response, and a miss happens.

void delete (key) Delete the value identified by the given key of a specific server.

Every IMKVS implementation can have its own commands. However, all of them

will rely these four basic commands. For instance, it is common to have others set command

variations, which can accept a third parameter for defining a timeout which the given object will

be stored into the memory.

In today’s datacenters, IMKVS are mostly used to serve as a caching layer that

holds complex and time consuming tasks, like large database queries results. The most common

approach followed by the applications that uses these caching layers consists in these three basic

steps: (1) when a request arrives, check if the related object has already been stored in the cache,

if find it, return it, otherwise; (2) run the database query and process whatever is needed, and; (3)

store the result into the cache for future requests. Such strategy is called "look aside", which is

used by Facebook (NISHTALA et al., 2013) and most of complex cloud applications. Figure 5

shows the "look aside" strategy, where the left side represents the read path and the right side the

write path.

It is easy to notice that IMKVS is a crucial piece of today’s datacenters applications,

whereas these systems need to be capable of serving a huge amount of application requests that
1 Format: return type, command name, parameters

29

Figure 5 – The "look aside" strategy used to fill Memcached caches

Source: NISHTALA et al., 2013

aims to serve users’ requests. Following the approach described above, the simplest user request

may trigger multiple requests to the caching layer, which makes these caching layers be heavily

accessed over time. Besides, due to the huge complexity involving cloud applications, it is usual

to set up datacenters with tens of thousands instances of IMKVS systems. Figure 6 shows how

Facebook sets up their application servers in conjunction with the database and the Memcached

instances. Obviously this structure must be replicated thousands of times to represent the actual

size of the infrastructure needed to support the social network systems.

Figure 6 – Facebook’s servers architectural overview

Source: NISHTALA et al., 2013

30

3 RELATED WORKS

The problems related to SDN load balancing have been discussed by some re-

searchers and some related works are briefly discussed in Section 3.1. Then, in Section 3.2, some

closely related works about load balancing of IMKVS will be discussed in order to give an idea

of similar problems were addressed by other researchers.

3.1 LOAD BALANCING ON SOFTWARE-DEFINED NETWORKS

The work (LI; PAN, 2013) have proposed an OpenFlow-based load balancer for

Fat-Tree networks that supports multipath forwarding. Their proposal aims to recursively find

the current best path from a source to a destination, load balancing the network by enabling the

use of alternate paths at runtime, minimizing network congestion. Their algorithm works only

on networks that operate on the Fat-Tree topology and use network metrics for choosing the best

path.

The work (WANG et al., 2011) have proposed an interesting load balancing approach

that aims to proactively load balance traffic from clients to servers by slicing the IP address

space into trees that isolates a set of clients to a set of servers. The work uses the concept of

server weighting, which defines a fixed portion of the clients to a server on the network. To do

so, it is proposed the extensive use of wildcards, which may reduce forwarding performance and

create management issues, as can be seen in (BATISTA et al., 2014). Furthermore, the proposed

solution requires that, at certain conditions (network topology changes or server weight updates),

a part of the network traffic passes through the controller, which could cause serious scalability

problems that may lead the network controller to collapse. Network metrics are not considered.

The work (KOERNER; KAO, 2012) proposes an architecture that enables in-network

load balancing of multiple services using OpenFlow. Their proposal relies on a set of SDN

controllers on top of a FlowVisor instance (SHERWOOD et al., 2009), where each controller

is responsible for load balancing the traffic of a specific service. The authors have focused on

the architecture, so there is no information about particular service implementation, while the

performed experiment does not fit real-world scenarios. The idea of using a set of controllers to

handle exact services might be interesting in some specific cases, but has the drawback of not

permitting multiple services to be handled by a single controller, which is the most common case

of SDN deployment.

31

The work (HANDIGOL et al., 2009) shows Plug-n-Serve, a module that reside within

an OpenFlow controller that is capable of perform load balancing over unstructured networks,

aiming to minimize average response time of HTTP servers. Plug-n-Serve load balance HTTP

requests by gathering metrics about CPU consumption and network congestion on the network

links, which makes its load balancing algorithm to select the appropriate server to direct requests

to, while controlling the path taken by packets on the network.

3.2 LOAD BALANCING OF IN-MEMORY KEY-VALUE STORAGES

The work (CESARIS et al., 2014) proposes Network-Assisted Lookups (NAL), a

method to do rapid load balance of key-value storages through the existing IP infrascructure.

The proposed solution consists in assign multiple IP addresses to each server of the caching

layer, being each IP address mapped to a bucket of objects. The NAL Controller is responsible

for collect the load of the buckets in order to notice performance degradation of servers. Since

the controller recognize that a bucket is an issue, through pre-configured threshold values, it

fires the migration process in order to move the bucket to the less loaded server into the caching

layer. Insofar as each bucket is assigned to a IP address, the server that holds the recently moved

bucket is also assigned to its IP address, in order to guarantee that further requests to the bucket’s

objects will be successfully accomplished. NAL was compared to CH and results shown that

NAL achieves a balanced state close to half of the time that Consistent Hashing does.

The work (ZHANG et al., 2014) proposes MemSwitch, a proxy capable of interpret-

ing and redirecting Memcached requests. The proxy was used to serve as a load balancer and

caching layer to a set of Memcached servers. MemSwitch was built upon the DPDK libraries

that allow userspace network IO, minimizing the overhead of packet copying between the VM’s

OS-Kernel and the proxy application. The preliminary results showed that MemSwitch had

better results than Twitter’s TwemProxy (RAJASHEKHAR, 2012), reducing the request latency

by half and increasing throughput by eight. Despite the good results shown in the study, there

are some points to be aware of: (1) the proxy is application aware, making the proxy’s location

a negative characteristic for the deployment in real networks; (2) the study showed the proxy

running only for a single Memcached server, while most of today’s datacenters have tens of

thousands of servers; (3) set requests can not have their size greater than a packet’s size, limiting

harshly Memcached’s clients, since most of the packets that travel over the network have a size

in order of bytes or kilobytes; and, (4) MemSwitch focuses only in handling requests made

32

by the UDP protocol, supporting TCP only when redirecting to a single server. This could be

acceptable only if the clients tolerate UDP fails by considering it as a cache miss, otherwise the

packet recovery would generate an overhead that would not justify the use of UDP instead of

TCP. Finally, the authors have not shown how MemSwitch would handle mget requests.

33

4 TWO-PHASE LOAD BALANCING OF IMKVS CACHES

This Chapter will introduce the two-phase load balancing mechanism that aims to

improve IMKVS cache performance. As said previously, the proposed solution consists in two

systems, uLoBal and kvsKeeper, that are responsible for specific tasks of the load balancing

process. uLoBal was developed to serve as a generic SDN load balancer that can operate with

three distinct load balancing algorithms, which can be configured according to the type of service

that should be load balanced. On the other hand, kvsKeeper is a VNF specialized in IMKVS

traffic management and popular data replication that can be deployed on unstrucured networks

aiming the replacement of the CH algorithm. The next sections will introduce each system in

details. Figure 7 shows how an arbitrary network would be with the presence of both uLoBal

and kvsKeeper.

Figure 7 – An arbitrary deployment scenario for the two-phase load balancing

Source: The author

The first phase of the load balancing is made by uLoBal, a system that is deployed

34

atop the SDN controller, managing the network flows that are destined to a configured type of

service, following a given load balancing operational mode (or algorithm). The uLoBal architec-

ture was designed to provide high flexibility and to fit multiple and diverse scenarios and needs.

As described previously, it is essential that an in-network load balancer can address different

types of service, not being focused on specific scenarios, allowing high flexibility and helping

to reduce operational costs over time, so uLoBal follows such design directive. Furthermore,

uLoBal introduces a method for performing in-network load balancing that considers the load

conditions from both network and servers, which makes the system to be dependant of updated

network statistics, allowing a more efficient use of network resources.

The second phase of the load balancing is made by kvsKeeper, a VNF responsible

for handling IMKVS traffic in order to forward commands to the best available IMKVS server,

reducing both network and server overload. As said previously, kvsKeeper is also able to replicate

popular data stored on servers. By performing replication on objects, kvsKeeper can forward

get commands to a less loaded replica server. It is possible to have multiple VMs executing

a kvsKeeper process in order to allow elasticity, so, it is necessary to create a mechanism that

allows each instance to share their internal forwarding state, ensuring that neither addition nor

removal of VMs cause data inconsistency. Thus, it is used a Distributed Hash Table (DHT)

(STOICA et al., 2001) to hold the forwarding state across the VMs. Figure 8 shows how uLoBal

and kvsKeeper work together while load balancing IMKVS traffic.

Figure 8 – Network communication while forwarding IMKVS traffic

Source: The author

According to Figure 8, when the IMKVS client sends a command to any IMKVS

server on the network, the client will send the packets a switch on the network (1). At the

moment the switch receives the first packet of the IMKVS flow, it will send a PacketIn message

to the OpenFlow controller (2), which will trigger the uLoBal management to install a new flow

on the switch (3) that will be responsible to forward the traffic to the best kvsKeeper instance

35

that is available on the network (4). Once a kvsKeeper instance receives a IMKVS command,

it asks the controller the current network conditions (5) and the most up-to-date statistics are

delivered to kvsKeeper (6), so, kvsKeeper can decide to which IMKVS the arriving command

will be forwarded. After the internal forwarding state has been updated, kvsKeeper forwards the

command to the cache server (7) and process its response (8). After that, the command response

is forwarded back to the client (9 and 10). It is important to notice that the steps (2), (3), (5) and

(6) does not happen at every IMKVS command sent. Steps (2) and (3) will happen according

to the presence of a flow entry on the switch’s flow table, while steps (5) and (6) will happen

periodically independently of arrival of commands.

4.1 ULOBAL: ENABLING GENERIC LOAD BALANCING ON SDN

Figure 9 – uLoBal architectural modules

Source: The author

The uLoBal architecture was designed to provide high flexibility and to fit multiple

and diverse scenarios and needs. As described previously, it is essential that an in-network

load balancer can address different types of service, not being focused on specific scenarios.

The uLoBal follows such a design directive, aimming to identify a set of servers of a service

using a unique identifier that will set the load balancing mode for that service. Furthermore, the

uLoBal needs to be aware of network statistics in order to enable a load balanced forwarding,

allowing a more efficient use of network resources. To this extent, uLoBal has three main

modules: (1) the network monitoring module; (2) the load balancing module; (3) the management

module, a Representational State Transfer (REST) API that allows management by the network

administrator and integration with other monitoring tools. All these components are embedded

on the SDN controller in order to avoid unnecessary communication with external services.

36

Figure 9 shows how these components are connected.

In an environment where there is a set of services that can be accessed through

multiple endpoints, it is possible to perform in-network load balance in order to allow an even

distribution of requests. The main objective behind uLoBal is to enable such service load

balancing yet performing network load balancing. In networks where there are multiple paths

between clients and endpoints, it is possible to use alternate paths as the network workload grows,

mitigating problems related to networking congestion and reducing end-to-end latency. uLoBal

can load balance the servers of the services by algorithms that use static and dynamic approaches

that account for recent load information on both servers and network. Further subsections will

give detailed information about each module.

4.1.1 Management Module

The uLoBal Management API can be accessed through a REST service, in order to

allow administration and integration with external systems that can give updated load information

of the services’ servers. As the SDN controller cannot perform complex load monitoring at the

servers, it is necessary to expose such service in order to allow an external monitoring tool to

provide such information to the load balancer. Table 1 shows the uLoBal API methods.

Table 1 – uLoBal API methods and parameters

Method Parameters Used By

1 insertServiceEndpoint (ServiceId, IP, Port) Network Admin
2 deleteServiceEndpoint (ServiceId, IP, Port) Network Admin
3 updateServerLoad (ServiceId, IP, Port, Load) Monitoring System
4 changeLBMode (ServiceId, Mode) Network Admin

The uLoBal uses a tuple of three values to identify an endpoint (or server) of a

service: the ServiceId, IP address and transport port values. The ServiceId value is any string

that uniquely identifies the provided service on a set of servers, being each server identified by

the IP address and transport port values. Any kind of service that uses the TCP or UDP protocols

can be addressed using these values if all of its endpoints are accessed on the same transport port,

which is the most common case. The methods 1 and 2 of the API defined in Table 1 uses exactly

this tuple in order to add or remove endpoints to/from the load balancing. The method 3 is used

by an external monitoring system that updates the load information of each server that provides

access to the service, being the Load value the last load measure of a server normalized within

37

the interval [0,100]. The Load is a generic value that can be calculated using any application’s

specific metric. In order to allow the network administrator to change the load balancing mode

that must be used for a given ServiceId, the Mode value must be informed on the method 4 using

one of three possible values: ServerRoundRobin, ServerIpHash or NetServerLoad, making the

load balancer to change the balancing algorithm.

4.1.2 Network Monitoring Module

Since uLoBal uses network load information in order to load balance the service

traffic on multiple forwarding paths, it is necessary to account such load data to perform the load

balancing. The network monitoring consists of two steps: (1) collect statistics on every port

of every switch of the SDN at predefined time intervals; (2) calculate the spanning tree of the

network graph using the collected statistics as the cost metric.

The collecting process is made through the use of StatsRequest messages sent from

the SDN controller to all switches on the network. Adrichem et al. describe a similar process in

(ADRICHEM et al., 2014). When the load statistics are collected, the Dijkstra algorithm is used

to compute the spanning tree that will be internally cached to be queried by the load balancing

component. The cost metric used to compute the tree is given by LinkCost = b+ e, where b is

the percentage of the used link’s bandwidth and e is the percentage of packets that have suffered

of either drops or transmission errors. The LinkCost must be normalized within the interval

[0,100] before the spanning tree is calculated.

4.1.3 Load Balancer Module

The uLoBal load balancer module is responsible for load balancing requests based

in three operational modes: Round-Robin (RR), IP Hashing (IPH) and Network and Server Load

(NSL), as shown in Table 2. Each one is identified in the REST API by ServerRoundRobin,

ServerIpHash and NetServerLoad, respectively.

Table 2 – uLoBal operational modes

Name Behavior

Round-Robin Static
IP Hashing Static
Network and Server Load Dynamic

38

The load balancing mechanism is based on the principle of SDN, where the controller

can push flows on the switches when there is no matching flows for an arriving packet. At this

moment the controller receives a PacketIn message, that will be handled by the load balancer

module if the destination IP and port match some previously inserted endpoint. The handling

algorithm will depend on the configured load balancing mode for the matching ServiceId, with

the NSL mode as the default mode. Algorithm 2 shows how the PacketIn message is handled by

the controller.

Algorithm 2: PacketIn handling algorithm
Data: A PacketIn message
if Packet’s destination IP and port belongs to any ServiceId then

sId := get the matching ServiceId; lbMode := get the configured load balancing mode
for sId;
switch lbMode do

case ServerRoundRobin
call RR(PacketIn, sId);

end
case ServerIpHash

call IPH(PacketIn, sId);
end
case NetServerLoad

call NSL(PacketIn, sId);
end

endsw
Send the packet on a PacketOut message;

end
else

Ignore the packet, not interfering the normal processing;
end

The uLoBal provides two approaches for load balancing service requests. The first

is static, an approach that does not consider either network or server metrics in order to make

decisions to where forward incoming traffic, while the second approach is dynamic and uses

this metrics in order to make traffic orchestration. The static approach has the advantage of less

overhead since there is no need to be aware of such metrics, which may be useful to networks

where there is little congestion and to services that need some predictability about which server

will handle a given request. On the other hand, the dynamic approach enables better network

traffic orchestration, using resources according to their most up-to-date metric information,

which can help to reduce network congestion and, consequently, improve the users Quality of

39

Experience (QoE). Algorithms 3 and 4 uses the static approach, while the Algorithm 5 uses the

dynamic approach.

Algorithm 3: RR algorithm
Data: A PacketIn message and the sId
Increment the RR packet counter for the given sId;
pktC := the RR packet counter for the given sId;
sLen := get the amount of servers that belongs to sId;
sIndex := pktC mod sLen;
From the list of servers of sId, get the server dstSrv stored at the sIndex position;
Get the less costly network path from the packet’s source to dstSrv and send FlowMod
messages to the switches on the path;

Algorithm 3 is a basic function that simply forward requests by choosing the destina-

tion server through the Round-Robin algorithm. Once it chooses the server, it gets the currently

cheapest network path from the source to the destination in order to load balance the network.

Its main characteristic is that the servers constantly receive a similar amount of requests, which

can be useful for services that the costs of the requests are always the same.

Algorithm 4: IPH algorithm
Data: A PacketIn message and the sId
Create a circular list srvCirLst;
foreach server srv that belongs to sId do

Calculate the hash h of the srv IP;
Insert h into srvCirLst;

end
Get the packet’s source IP and calculate its hash srcH;
Insert srcH into srvCirLst and get its index srcIdx;
Get the server dstSrv whose hash is stored at the srcIdx+1 position on srvCirLst;
Get the less costly network path from the packet’s source to dstSrv and send FlowMod
messages to the switches on the path;

Algorithm 4 aims to map a set of clients to the same endpoint following a CH

approach (KARGER et al., 1997). The main goal is to always forward requests made by an user

to the same endpoint, which may be useful for services that need to fetch context information

before serving the request, since this context information can be locally cached.

Algorithm 5 was designed for considering the current network and server loads in

order to choose the destination server. It works by selecting the endpoint that can be accessed

with the minimum cost, being the cost calculated through the geometric mean of both server and

40

Algorithm 5: NSL algorithm
Data: A PacketIn message and the sId
Create a Hash Map cstMap capable of storing multiple values mapped by a single key;
foreach server srv that belongs to sId do

Get the less costly network path nPth from the packet’s source to srv;
netCst := the cost of nPth;
srvCst := the current srv cost value;
cost := 2

√
netCst× srvCst;

Insert the nPth on cstMap mapped by cost;
end
Get the minimum key k from cstMap;
Get a random entry nPth mapped by k;
Send FlowMod messages to the switches on the path nPth;

network costs. As a dynamic approach, it is not easy to predict which requests are going to reach

a determined server, since it will depend exclusively on the current load from both servers and

network.

In Algorithm 5, the cost of a network path, called netCst, can be calculated in many

ways, depending on the target network, though the experimental version of uLoBal has used (4.1)

to define the cost of a given path. Since a network path is composed by a set of links connecting

a pair of network devices, let δ be the sum of the metrics of each link on the path.

δ =
n

∑
x=1

(
100− (ζ −ν)

)
(4.1)

Note that Algorithms 3, 4 and 5 sends FlowMod messages to the switches within

the network path from the source to the selected endpoint. Each FlowMod message consists

in a header that matches the packet and two actions, (1) rewrite the packet’s destination/source

address; and (2) send the packet to the next hop. Furthermore, note that even though Algorithms

3 and 4 performs a static server load balancing, the chosen network path remains dynamic, since

the selection process is based on the network metrics collected by the monitoring module. The

flows generated by uLoBal use a soft timeout approach in order to set the duration of flows on

switches, configuring the inactivity timeout to 1 second.

4.2 KVSKEEPER: ON THE LOAD BALANCING OF IMKVS

When clients send commands to IMKVS servers, if there’s no path configured within

the switch in which the packet has reached, the switch asks the SDN controller to where to

41

forward the packets. Once the request arrives at the controller, uLoBal will forward the packets

to a kvsKeeper instance by using the NSL load balancing mode. To this extent, each kvsKeeper

instance must be integrated with the uLoBal management module, by periodically sending load

data through the method updateServerLoad on the REST API. The load of a kvsKeeper instance

is defined in (4.2).

γ = (100− 3
√

ε×ξ ×η) (4.2)

The main reason that justifies the deployment of kvsKeeper as a VNF is the handling

process of the connection between the IMKVS’s client and server. Supose that a client C1 starts

a request to a server S1 and this server has a IMKVS instance that handles connections through

TCP. The first thing that must happen is a three-way handshake, which consists in a negotiation

between the hosts in which three packets need to be exchanged: SYN, SYN + ACK and ACK

(POSTEL, 1981). To both C1 and S1 establish the connection, all these packets need to reach each

other, forcing the switch and the controller to forward these packets without any intervention.

When the packets arrive the switch, no entry flows will match with them, which will make the

switch send a PacketIn message to the controller. Once the packet arrives at the controller, it must

send a PacketOut message with the original packets’ destination. After C1 and S1 establishes

the connection, the controller could analyse further packets in order to extract the key which the

command refers to, and only at this moment the controller could send a FlowMod to the switch

in order to forward further packets directly. In other words, it is not possible to make a deep

inspection of the packets until the connection be established.

Besides, there are a few considerations about this approach. First, when a command

finishes, would be necessary to remove the recently installed flow, since the load balancing must

be per key, not per connection. Second, the controller would be flooded with PacketIn messages

since the time of life of a flow is too short, making the controller behave like the only network’s

switch. Third, it would not be possible to handle mget commands, due to the fact that if the load

balancing is per key, then there is no guarantees that all the requested keys are stored on the same

server, increasing the cache misses. Finally, it would create serious scalability problems, due to

the high amount of packets being handled by the SDN controller.

Said that, it is crucial to move the task of inspecting packets to a VNF, which has to

handle connections to both clients and servers. In the proposed solution, when a client opens a

42

connection to a server, the uLoBal is going to forward the packet to a kvsKeeper instance. At this

point, kvsKeeper have to establish the connection with the client and start to listen its commands

in order to forward it to the best IMKVS server at the moment. The use of uLoBal for performing

the first load balancing is a crucial task to avoid the own kvsKeeper of becoming a bottleneck,

since all the IMKVS would always be forwarded to the same point in the network.

The VNF is designed to deal with IMKVS requests by distributing them evenly

across the caching servers. To do this, kvsKeeper must be aware of the specific IMKVS protocol

to ensure that it will be compatible with all the available commands. When a IMKVS client tries

to save an object into the caching layer, it will use a set command. In this case, there are two

possible situations: the object whether exist or not in the cache layer. When the object does not

exist, then kvsKeeper need to select the best caching server and forward the request to it. On the

other hand, when the object exists, kvsKeeper need to overwrite the object on the servers that it

has already been stored. All other IMKVS commands supposes that the requested object has

already been stored into the cache. To this extent, when kvsKeeper handles get, mget and delete

commands, it supposes that the requested object has already been stored into some cache server,

so kvsKeeper just need to check which servers hold the object and then forward the command to

the best IMKVS server. If the object has not been stored anywhere, so, kvsKeeper can send back

a cache miss to the requester client, saving network communication by not forwarding a request

that certainly would not be successful.

To accomplish the requirements of IMKVS commands, it is necessary to build an

index that will be used to acknowledge where such objects were stored. Since every object

is mapped by an unique key, it is possible to use a Hash Table that maps a key k to a server

S. However, it is not possible to use a basic Hash Table to accomplish such a task, because

kvsKeeper may have multiple instances and the requests that reach a specific instance are not

forwarded by its keys. Hereupon, the index must be shared with all kvsKeeper instances in order

to satisfy such requirements, and this is made by using a DHT.

4.2.1 Architectural Components

Each kvsKeeper instance has four basic components, as described in Figure 10.

Arrows indicate that a component A depends of component B (A → B) and inter-VM links

indicates network communication. Both C. Pool and S. Pool are connection pools to both

clients and servers, respectively. Dispatcher and Replicator components are the most important

43

ones. The first is responsible for handle and forward requests from clients to servers, according

to the load balancing algorithms. The second is capable of getting the most popular cached

objects, through the Hit Counters, and create copies of them across the caching layer, in order

to minimize the appearance of hot spots within network. The Index maintains updated and

distributed information about the location of each object into the caching layer, by mapping an

object’s key to a set of IMKVS servers.

Figure 10 – kvsKeeper architectural components on two VMs

Source: The author

These components are going to be described in details on the next subsections.

4.2.2 Index

In a DHT, every node that is part of its overlay network is responsible for holding

a portion of the table. These distributed data structures have a set of algorithms for providing

lookup operations and a series of mechanisms to fail tolerance. DHT is one of the basis of several

distributed systems and Peer-to-Peer (P2P) applications, being capable of handling millions of

requests swimmingly (RISSON; MOORS, 2006). The main reason of choosing a DHT instead

of a unique centralized Hash Table is that by doing this the system would have only a single

point of failure, what could be extremely dangerous in a datacenter environment. There are

several protocols that implements DHT, but four are considered to be the first ones: Chord

(STOICA et al., 2001), Content Addressable Network (CAN) (RATNASAMY et al., 2001),

Pastry (ROWSTRON; DRUSCHEL, 2001) and Tapestry (ZHAO et al., 2004). The kvsKeeper

shared index will use the Chord protocol, although it could be any other DHT protocol. Chord

has been chosen due to ease of development and flexibility, but other DHT protocols should be

44

supported as well.

Chord provides lookup operations in logarithmic time, needing O(logN) messages

to find any object, where N is the amount of nodes into the network (STOICA et al., 2001),

which makes it scalable. Supposing that each kvsKeeper instance can handle 500 requests per

second in a datacenter with 106 IMKVS requests per second, then the whole datacenter would

need at least 2000 kvsKeeper instances to handle all these requests. This means that, in such

simplistic environment, kvsKeeper would need only 11 lookup messages to find an indexed

value. Although the logarithmic time of Chord lookup, it is important to avoid networking while

handling a huge amount of IMKVS requests. Supposing that there are W switches between each

kvsKeeper VM, then it would be necessary at least 2×W ×N packets traveling over the network

just for a single index lookup.

Considering a datacenter environment, the network topology is one important feature

to consider. Taking Facebook’s "4-post" network topology (FARRINGTON; ANDREYEV,

2013) as an example, if there are some DHT nodes spread across some different clusters, a lot

of network communication would be forwarded to both cluster and aggregation switches. It is

preferable to perform intra cluster switching rather than inter cluster switching, avoiding high

traffic at aggregation switches.

The main reason that IMKVS servers are deployed as caching layer is the high

throughput that such systems are capable of provide, so, is necessary to use an internal Hash

Table over Chord, avoiding networking in each IMKVS request, providing some improvement

on the basic DHT algorithm. So, this internal index is a minor portion of the main DHT shared

index. It works as follows. For each incoming lookup request on the index, kvsKeeper checks if

the key is into the internal index, checking the shared index only if the key could not be found

into the internal index. Once the shared index returns the requested value, it is replicated into the

internal index for future lookup requests. When either insert or delete request is made, kvsKeeper

sends it to both internal and shared indexes. By doing this kvsKeeper reduces expensive network

communication, providing faster lookups in time Ω(1). Thus, both internal and shared indexes

store an object that contains an arbitrary key k that maps a set of servers S (k 7→ S).

4.2.3 Dispatcher Module

The main component of kvsKeeper is the Dispatcher, which contains all the VNF

central logic. It is responsible to handle and forward requests from clients to servers, according

45

to the load balancing policy. This subsection is going to give a view of what happens when a

request arrives into a kvsKeeper instance.

When a request arrives at a kvsKeeper instance, the dispatcher is going to inspect the

command sent by the client to some server. The first step made by the dispatcher is to extract

the key(s) whose command refers to. If the command has more than one packet (what depends

on the IMKVS protocol), it will be necessary to read only the p first packets needed to extract

the key, ignoring the inspecting process of further packets of the same command. Once the

dispatcher has both key(s) and command type (set, get, mget or delete) it can do specific actions

according to the command type. Algorithms 6, 7, 8 and 9 must be executed according to the

command type.

Algorithm 6: Dispatcher’s set algorithm
Data: A command C and a key k
S := Index.get(k);
if S is not empty then

foreach server s in S do
Open a new thread and forward C to s;

end
When the first thread finish forwarding, returns its response to the requester client;

end
else

s := gBstSrv();
Forward C to s and return its response to the requester client;
Index.put(k, s);

end

Algorithms 6 and 7 are the most important dispatcher’s algorithms. The basic idea

behind them is first check where the content was stored, by looking up into the index, and if

the contents are not stored anywhere, then one of the available servers is selected based in their

current load. Algorithm 7 can receive a miss from the target server even if the key is into the

index, due to some cache eviction policy, like Last Recently Used (LRU). Also, it is possible that

some IMKVS have a time to live set on some objects, causing the object removal without any

client intervention. In addition to that, there is a global hit counter and per-key hit counter.

Algorithm 8 splits a mget request into several get requests. At first, it could be a bad

idea because it is better to do a bulk request than multiple individual requests, but the problem

here is that when a server handles a high amount of keys per request, the server processing can

be a bottleneck, as described in (RAINDEL; BIRK, 2013). Since each sub request is made in

46

Algorithm 7: Dispatcher’s get algorithm
Data: A command C and a key k
S := Index.get(k);
if S is not empty then

s := gBstSrv(S);
Forward C to s and get resp;
Return resp to the client;
if resp is a miss then

Delete k from the index;
end
else

GlobalHitCounter += 1;
KeysHitCounter[k] += 1;

end
end
else

Return a miss to the client;
end

Algorithm 8: Dispatcher’s mget algorithm
Data: A command C and a key set K
foreach key k in K do

Open a new thread and call get(C, k);
end

parallel, the time to finish the whole mget command will depend on network conditions.

Algorithm 9: Dispatcher’s delete algorithm
Data: A command C and a key k
Delete k from the index;
Send a deleted message to the requester client;

Algorithm 9 aims to reduce the request latency by avoiding communication with the

servers that hold the requested key. This is not a problem since most of the IMKVS use eviction

policies in order to reuse memory.

Algorithm 10 shows the gBstSrv procedure used in Algorithms 6 and 7. The main

goal is to find the best server to forward an incoming IMKVS command, using the same metrics

defined in (4.1) and (4.2), considering the IMKVS servers though.

47

Algorithm 10: gBstSrv procedure
Data: An optional servers set S (when omitted, consider all available servers)
Result: A best server s
foreach server s in S do

Get the network cost LNet to reach s;
Get the server load LV M of s;

end
Get the set of servers bSrvs that minimizes 2

√
LNet×LV M;

return a random srv from the set bSrvs;

4.2.4 Replication Module

Algorithm 11 describes how the replication mechanism is executed within each

kvsKeeper VM instance. It checks the Hit Counters in order to retrieve the keys whose popularity

is greater than a given replication threshold, named Rt . Having all popular keys, the algorithm

reset all counters and replicate the related objects to p×R f servers, where R f is the replication

factor and p is an object’s popularity percentage. For example, if a key was responsible for

80% of the hits in a VM, then the corresponding object would be replicated over 40% of the

servers, if the replication factor was set to 0,5. Both parameters allow a fine tuning in the

algorithm behaviour, being able to adapt it to diverse environments and needs. The execution of

the replication mechanism depends on previous scheduling made by the network administrator,

also in order to adapt the mechanism to its needs.

Simultaneous executions of the replication algorithm on several VMs will cause

network congestion if there are very popular keys in multiple servers. Said that, would be

advisable to use mutual exclusion (RICART; AGRAWALA, 1981; MAEKAWA, 1985; SUZUKI;

KASAMI, 1985) between the VMs in order to avoid multiple replication processes running at

the same time, or even scheduling Cron (KELLER, 1999) tasks in each VM that does not overlap

each other.

48

Algorithm 11: Replication algorithm
Data: A replication threshold Rt and a replication factor R f
Get the current VM load LV M;
if LV M ≤ Lmax then

P := [];
ghc := GlobalHitCounter;
foreach khc in KeysHitCounter do

p :=
khc×100

ghc
;

if p≥ Rt then
Append {key : khc.key, pc : p} into P;

end
end
Reset both GlobalHitCounter and KeysHitCounter to 0;
S := all IMKVS servers sorted by its loads;
foreach p in P do

Get from the index the servers set Sk which k refers;
Sr := S−Sk ;
c := p.pc×R f ;
Replicate p.key over the c first Sr servers;

end
end

49

5 EVALUATION

The evaluation of the proposal was made in four experiments. Further sections will

describe each experiment in details.

The evaluation environment was based on a virtualized network using Mininet

(LANTZ; HELLER, 2015) on top of an Amazon EC2 c4.8xlarge instance. The Mininet system

permits the specification of a network interconnecting virtualized devices. Each network device,

hosts, switches and controller are virtualized and communicate via Mininet. A Python script is

used to create the topology in Mininet, and the traffic flow control is made by the OpenFlow

controller. Therefore, the test environment implements and performs the actual protocol stacks

that communicate with each other virtually. The Mininet environment allows the execution of

real protocols in a virtual network. The possibility to set link bandwidth and delay in Mininet

allowed the experiment similar to an actual scenario.

The chosen OpenFlow controller was the Floodlight (ERICKSON, 2012), due to

its simplicity and development flexibility. The network metrics were collected on Floodlight,

according to (ADRICHEM et al., 2014), while the server metrics were collected using native

monitoring tools from Ubuntu Server 14.04. All metrics were collected periodically, with a

interval of 1 second between successive monitoring calls.

Figure 11 – Facebook’s "4-post" network topology

Source: FARRINGTON; ANDREYEV, 2013

Figure 11 shows the Facebook’s "4-post" (FARRINGTON; ANDREYEV, 2013)

topology, that was used in experiments 2, 3 and 4. Random latencies from 0 to 1 milliseconds

and 0 to 3% of packet losses was set in all links in each experiment execution. Bandwidth values

was set according to the topology description in (FARRINGTON; ANDREYEV, 2013). IMKVS

commands’ keys and values were generated randomly according to the description made in (XU

50

et al., 2014). Memcached (FITZPATRICK, 2004) was chosen to be the IMKVS server.

5.1 EXPERIMENT 1

It is necessary to validate how the SDN load balancing performed by uLoBal is going

to behave in an arbitrary service in different load balancing modes. To this extent, the experiment

1 was divided in two scenarios.

The first scenario aims to compare how the network load balancing approach affects

the perceived delay on clients when requesting some content from a Content Delivery Network

(CDN) server that operates through HTTP. This scenario aims to isolate the network load

balancing from the server load balancing, allowing better analysis of the proposal behavior. So,

the network topology has only a single server that is accessed by several clients spread over the

network. Since there is a single server, all the requests are forwarded to a single point of the

network, which makes the load balancer to perform swapping on the forwarding paths at runtime,

balancing the traffic load. For comparability, the experiment has addressed the use of uLoBal

operating on the NSL mode and the use of a traditional Shortest Path First (SPF) approach.

The second scenario aims to compare how the different load balancing modes affect

(1) the client perceived latency and (2) the server load. Again, the clients are going to request

contents on CDN servers that operate through HTTP. In this scenario, it is used three CDN

servers, each one providing an endpoint for content delivery, making uLoBal to forward requests

to one of these servers, following the configured load balancing mode.

Figure 12 shows the Abilene network topology, which has been used to perform

the experiment 1. The topology’s sources were obtained from the TopologyZoo (KNIGHT et

al., 2011) and parsed according to the method described by (GROSSMANN; SCHUBERTH,

2013). In the first scenario, the server was positioned at the network node represented by

the Indianapolis city. In the second scenario, the servers were positioned at the New York,

Washington and Sunnyvale cities. Neither link latency nor bandwidth has been modified in the

experiments. In each city that did not contain any CDN endpoint, a set of 10 clients has been

placed in order to make content requests. Each client was configured to perform sequential

requests to a randomly chosen server from the available servers of the experiment. Of course, it

is the load balancer’s job to redirect the request to the proper server, following the load balancing

mode.

51

Figure 12 – Network Topology for the uLoBal experiments

Source: QUOITIN, 2016

5.2 EXPERIMENT 2

In order to check how kvsKeeper would beneffit the applications that rely on opera-

tions mande on multiple distributed IMKVS caches, the load balancing of these requests must be

evaluated. The second experiment aims to evaluate how kvsKeeper would impact the time for a

IMKVS client execute the four basic operations on a IMKVS server. By evaluating this, it would

be possible to check if the overhead of inclusion of a VNF on the network would be worthwhile

to the clients.

Said that, 10 clients were configured to trigger 100 operations per second to a set

of 10 IMKVS servers. Just a single kvsKeeper instance is used, so uLoBal becomes useless

in balancing load on VNF instances, while the network load balancing is performed normally

through the NSL mode. NSL has been choosed due to its capacity of load balancing dynamic

workloads, which makes it the better choice for IMKVS services. For comparability, the same

amount of clients and servers were configured to use the traditional CH.

5.3 EXPERIMENT 3

Both uLoBal and kvsKeeper must be set up together in order to evaluate how the

whole load balancing would act in an actual datacenter scenario, checking the relationship

between caching performance and the number of load balancers on the network.

52

The third experiment aims to evaluate the relationship between the number of

kvsKeeper instances with the achieved performance of IMKVS commands. To this extent, the

mget command execution time was chosen as the baseline performance metric, since the mget

command is the responsible for most of the traffic IMKVS in most applications. Facebook

has reported about 99.8% of read operations at one of its cache pools (XU et al., 2014). This

experiment is important to answer the question about how many kvsKeeper instances would be

needed to achieve a performance metric at different workloads, which is usefull for provisioning

and cost planning.

5.4 EXPERIMENT 4

Finally, as an extension of third experiment, it is necessary to check how the loads

from both network and servers are affected when the proposed solution is deployed on a

datacenter, comparing the results with CH.

The fourth experiment aims to check how better uLoBal and kvsKeeper are compared

to the traditional load balancing approach, the CH. The results of this experiment could be the

most important indicator to be considered while deploying the proposed solution on an actual

production network. The network load metrics were collected on the own SDN controller, while

the server metrics were collected using the monitoring tools provided by their operating system.

Since the results needed to be compared with CH, both keys and objects were generated just

once to ensure that the load measures would be made at equal traffic conditions.

53

6 RESULTS

This Chapter is going to present the results of the experiments described in the last

Chapter. Further sections follows the same presentation pattern found on Chapter 5.

6.1 EXPERIMENT 1

Figure 13 – SDN load balancing compared to a traditional SPF forwarding strategy

Response	Size	(KB)

D
el
ay

Shortest	Path uLoBal

100 200 400 800 1600
0	ms

25	ms

50	ms

75	ms

100	ms

125	ms

150	ms

175	ms

Source: The author

Figure 13 shows the results for the first scenario of the first experiment, where the

network load balancing was compared to a SPF approach. By looking at the results, it is possible

to notice that at low workloads, these approaches did not show significant differences, suggesting

that the proposed network load balancing scheme is not relevant. However, when the workload

starts to grow, there is an improvement in order of tens of milliseconds on the clients perceived

delay, suggesting that this network load balancing approach can be useful as the workload grows.

Besides, it is possible to conclude that at high workloads, the network would benefit form such

load balancing mechanism, since congested paths would be avoided.

Figure 14 shows the results for the second scenario of the first experiment, where

the load balancing modes can be compared with each other. Both RR and IPH have similar

54

Figure 14 – Message delivery delay when using SDN load balancing modes

Response	Size	(KB)

D
el
ay

Round-Robin	(RR) IP	Hashing	(IPH) Network	and	Server	Load	(NSL)

100 200 400 800 1600
0	ms

10	ms

20	ms

30	ms

40	ms

50	ms

60	ms

70	ms

Source: The author

behaviors at different workloads, although the RR shows better latency results. Such results can

be explained by the fact that the network nodes are spread over an area of a whole country, with

the servers being positioned at the edges of the network, which makes the use of these techniques

a bad idea due to the high distance, increasing the end-to-end delay. It is possible to notice that

the NSL mode outperforms both RR and IPH modes, which can be explained using both server

and network metrics when deciding to which server the requests will be forwarded, considering

always the less costly network path at the moment. When the responses’ sizes were 1600 KB,

the improvement was about 53% and 62%, compared to RR and IPH modes, respectively.

Figure 15 shows the results where the average servers’ load can be compared ac-

cording to the load balancing mode. Again, both RR and IPH modes are similar to different

workloads, unless the responses’ sizes were 1600 KB. This result was being expected, since these

load balancing schemas aim to distribute the requests evenly across the servers, not looking for

any external factor on the decision-making process. For this reason, it is also possible to notice

that NSL can alleviate the average server load in most of the workloads, suggesting that the

proposed load balancer can be useful in different production networks with distinct workloads

when configured to operate in this mode.

55

Figure 15 – Servers load levels when using SDN load balancing modes

Response	Size	(KB)

Lo
ad

Round-Robin	(RR) IP	Hashing	(IPH) Network	and	Server	Load	(NSL)

100 200 400 800 1600
0

20

40

60

80

100

Source: The author

6.2 EXPERIMENT 2

Figure 16 – IMKVS commands execution time comparison

Command	type

Ti
m
e

Consistent	Hashing	(CH) Two-Phase	Load	Balancer

SET GET MGET DELETE
0	μs

200	μs

400	μs

600	μs

800	μs

1000	μs

Source: The author

56

Figure 16 compares the execution time of each IMKVS command. The results show

that, in all commands, the proposed load balancer improves the performance of IMKVS requests

when compared with CH. The most notable improvement can be seen on the mget command,

which time was reduced in 18%. Furthermore, the delete command had an improvement of 45%.

Although delete had an improvement greater than mget, the last is the most notable improvement,

since most of the workload is formed by read commands.

6.3 EXPERIMENT 3

Figure 17 – Execution time of mget command with multiple kvsKeeper instances

Number of VM instances

E
xe
cu
tio
n	
tim
e

10³	op/s 10⁴	op/s

1 2 4 8 16 32
600	μs

700	μs

800	μs

900	μs

1000	μs

1100	μs

1200	μs

Source: The author

Figure 17 compares the execution time of mget command with different numbers of

VM kvsKeeper instances. Results show that a lower amount of instances with a high op/s rate

(underprovisioning) causes performance degradation, while the addition of new instances reduces

the load, improving the results. This was an expected result, since it is the job of uLoBal to

forward requests to kvsKeeper considering the reported loads on the VMs. Besides, it is possible

to notice that overprovisioning does not improve the overall performance of mget commands,

since it can be observed that such situation would increase the operation time. This behavior

can be explained to the increase in lookup operations on the kvsKeeper shared index, which is

57

implemented on a DHT, so, if the number of instances increases, then more time is needed to

find an arbitrary entry. Therefore, the main conclusion from this experiment is that, in production

environments, a provisioning mechanism must be deployed in conjunction with the load balancer

in order to avoid performance degradation. The NFVMANO is the most suitable component to

perform such a task, which could work in conjunction with the SDN controller, since it is fully

aware of the current network conditions.

6.4 EXPERIMENT 4

Figure 18 – Servers and network loads comparison

Lo
ad

Consistent	Hashing	(CH) Two-Phase	Load	Balancer

Server Network
0

25

50

75

100

Source: The author

Figure 18 compares the average load of both servers and network when using CH

and kvsKeeper. Results show that the proposed load balancer reduces the load of both servers and

network by 23% and 5%, respectively. Furthermore, the load variation was reduced compared to

CH. Such behavior would be expected due to the capacity of selecting the less loaded servers

when storing content, and also due to the replication mechanism. Besides, the use of uLoBal on

the SDN controller in conjunction with multiple kvsKeeper instances over the network could

improve users QoE while reducing operational costs, when compared to the CH traditional

approach.

58

7 CONCLUSION AND FUTURE WORK

Over the present work, it was shown that the use of caching based on IMKVS is a

fundamental aspect of modern cloud applications, since these applications should require an

efficient communication from the computer networks of datacenters. Besides, it was presented a

technique called Consistent Hashing, that is widely used to manage some aspects of the storage

of cached data, which has proved to be not so effective to the current demands imposed by

modern cloud applications.

This paper has presented a two-phase load balancer for IMKVS systems. The work

has proposed two modules to be deployed as a integrated solution that uses the architectural

concepts and practices of SDN and NFV in order to offer a reliable and scalable solution that can

be applied to real-world datacenters which support cloud applications. The first, uLoBal, a SDN

based load balancer, is capable of is capable of load balance arbitrary services through the use of

different forwarding approaches that address services of several types and nature. The second,

kvsKeeper, a VNF specialized in IMKVS cache traffic orchestration that balances the placement

of objects in the best servers, also providing replication mechanisms in order to relieve load and

mitigate the appearance of hot spots in the datacenter network.

Experiments have shown that both modules are capable of providing better use of

resources, reducing operational costs and improving users experience. On the uLoBal module,

results showed that network load balancing was improved when compared to classic network

forwarding, while helping to reduce load at distributed servers. On the kvsKeeper module, results

showed that the proposal outperforms Consistent Hashing, relieving the load on servers by 23%

and 5% on the network, while reducing the necessary time for complete the four basic commands

of IMKVS systems.

The current work opened some research opportunities that can be addressed in the

future. The kvsKeeper index is based on the Chord protocol, but the use of other DHT should

be evaluated in order to check if Chord really is the best option for kvsKeeper. Furthermore,

the index uses a strategy based on a small representation of the DHT being held in memory, the

internal index. This approach was needed to avoid networking on expensive datacenter network

segments, so it could be possible to develop novel DHT algorithms that are specific to some

datacenter topologies, avoiding the need of kvsKeeper’s internal and shared indexes. Additionally,

the use of a proactive approach to replicate popular objects could be proposed, by analyzing

the traffic patterns related to a set of cached objects. Finally, the acquired knowledge about the

59

integration of SDN and NFV was usefull to start a new research project, called ContentSDN,

which aims to use SDN and NFV to develop an Information-Centric Networking tool to improve

web users’ Quality of Experience by creating an in-network cache for HTTP requests.

60

BIBLIOGRAPHY

ADRICHEM, N. L. V.; DOERR, C.; KUIPERS, F. et al. Opennetmon: Network monitoring
in openflow software-defined networks. In: IEEE. Network Operations and Management
Symposium (NOMS), 2014 IEEE. Krakow, Poland, 2014. p. 1–8.

BATISTA, B. L. A.; CAMPOS, G. Lima de; FERNANDEZ, M. Flow-based conflict detection in
openflow networks using first-order logic. In: Computers and Communication (ISCC), 2014
IEEE Symposium on. Funchal, Portugal: [s.n.], 2014. p. 1–6.

CESARIS, D. D.; KATRINIS, K.; KOTOULAS, S.; CORRADI, A. Ultra-fast load balancing
of distributed key-value stores through network-assisted lookups. In: SILVA, F.; DUTRA, I.;
COSTA, V. S. (Ed.). Euro-Par 2014 Parallel Processing. Porto, Portugal: Springer International
Publishing, 2014, (Lecture Notes in Computer Science, v. 8632). p. 294–305. ISBN 978-3-319-
09872-2.

DECANDIA, G.; HASTORUN, D.; JAMPANI, M.; KAKULAPATI, G.; LAKSHMAN, A.;
PILCHIN, A.; SIVASUBRAMANIAN, S.; VOSSHALL, P.; VOGELS, W. Dynamo: Amazon’s
highly available key-value store. ACM SIGOPS Operating Systems Review, ACM, New York,
NY, USA, v. 41, n. 6, p. 205–220, Oct 2007. ISSN 0163-5980.

DORIA, A.; SALIM, J. H.; HAAS, R.; KHOSRAVI, H.; WANG, W.; DONG, L.; GOPAL, R.;
HALPERN, J. Forwarding and Control Element Separation (ForCES) Protocol Specifica-
tion. IETF, 2010. RFC 5810 (Proposed Standard). (Request for Comments, 5810). Available at:
<http://www.ietf.org/rfc/rfc5810.txt>. Last accessed: 30 Jan. 2016.

ENNS, R.; BJORKLUND, M.; SCHOENWAELDER, J.; BIERMAN, A. Network Config-
uration Protocol (NETCONF). IETF, 2011. RFC 6241 (Proposed Standard). (Request for
Comments, 6241). Available at: <http://www.ietf.org/rfc/rfc6241.txt>. Last accessed: 30 Jan.
2016.

ERICKSON, D. Floodlight Java based OpenFlow Controller. 2012. Available at: <http:
//floodlight.openflowhub.org/>. Last accessed: 30 Jan. 2016.

FARRINGTON, N.; ANDREYEV, A. Facebook’s data center network architecture. In: Optical
Interconnects Conference, 2013 IEEE. Coronado, CA, USA: [s.n.], 2013. p. 49–50.

FITZPATRICK, B. Distributed caching with memcached. Linux Journal, Belltown Media,
Houston, TX, v. 2004, n. 124, p. 5–, Aug 2004. ISSN 1075-3583.

GROSSMANN, M.; SCHUBERTH, S. J. Auto-Mininet: Assessing the Internet Topology
Zoo in a Software-Defined Network Emulator. Bamberg, Germany: [s.n.], 2013. Available
at: <https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_lehrstuehle/informatik_ktr/
Dateien/Publikationen/AutoMininet.pdf>. Last accessed: 30 Jan. 2016.

GUDE, N.; KOPONEN, T.; PETTIT, J.; PFAFF, B.; CASADO, M.; MCKEOWN, N.; SHENKER,
S. Nox: Towards an operating system for networks. ACM SIGCOMM Computer Communi-
cation Review, ACM, New York, NY, USA, v. 38, n. 3, p. 105–110, Jul 2008. ISSN 0146-4833.

HAN, B.; GOPALAKRISHNAN, V.; JI, L.; LEE, S. Network function virtualization: Challenges
and opportunities for innovations. Communications Magazine, IEEE, v. 53, n. 2, p. 90–97,
Feb 2015. ISSN 0163-6804.

http://www.ietf.org/rfc/rfc5810.txt
http://www.ietf.org/rfc/rfc6241.txt
http://floodlight.openflowhub.org/
http://floodlight.openflowhub.org/
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_lehrstuehle/informatik_ktr/Dateien/Publikationen/AutoMininet.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_lehrstuehle/informatik_ktr/Dateien/Publikationen/AutoMininet.pdf

61

HANDIGOL, N.; SEETHARAMAN, S.; FLAJSLIK, M.; MCKEOWN, N.; JOHARI, R. Plug-
n-serve: Load-balancing web traffic using openflow. ACM SIGCOMM Demo, v. 4, n. 5, p. 6,
2009.

KANDULA, S.; SENGUPTA, S.; GREENBERG, A.; PATEL, P.; CHAIKEN, R. The nature
of data center traffic: measurements & analysis. In: ACM. Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference. Chicago, IL, USA, 2009. p.
202–208.

KARGER, D.; LEHMAN, E.; LEIGHTON, T.; PANIGRAHY, R.; LEVINE, M.; LEWIN, D.
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots
on the world wide web. In: Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing. New York, NY, USA: ACM, 1997. (STOC ’97), p. 654–663. ISBN
0-89791-888-6.

KELLER, M. S. Take command: cron: Job scheduler. Linux Journal, Belltown Media, v. 1999,
n. 65es, p. 15, 1999.

KNIGHT, S.; NGUYEN, H. X.; FALKNER, N.; BOWDEN, R.; ROUGHAN, M. The internet
topology zoo. IEEE Journal on Selected Areas in Communications, IEEE, v. 29, n. 9, p.
1765–1775, 2011.

KOERNER, M.; KAO, O. Multiple service load-balancing with openflow. In: IEEE. IEEE
13th International Conference on High Performance Switching and Routing (HPSR2012).
Belgrade, Serbia, 2012. p. 210–214.

KREUTZ, D.; RAMOS, F.; VERISSIMO, P. E.; ROTHENBERG, C. E.; AZODOLMOLKY, S.;
UHLIG, S. Software-defined networking: A comprehensive survey. Proceedings of the IEEE,
v. 103, n. 1, p. 14–76, Jan 2015. ISSN 0018-9219.

LAKSHMAN, A.; MALIK, P. Cassandra: A decentralized structured storage system. ACM
SIGOPS Operating Systems Review, ACM, New York, NY, USA, v. 44, n. 2, p. 35–40, Apr
2010. ISSN 0163-5980.

LANTZ, B.; HELLER, B. Mininet: rapid prototyping for Software Defined Networks. 2015.
Available at: <http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet>. Last accessed: 30
Jan. 2016.

LI, Y.; PAN, D. Openflow based load balancing for fat-tree networks with multipath support.
In: Proc. 12th IEEE International Conference on Communications (ICC’13), Budapest,
Hungary. Budapest, Hungary: [s.n.], 2013. p. 1–5.

MAEKAWA, M. A n algorithm for mutual exclusion in decentralized systems. ACM Transac-
tions on Computer Systems (TOCS), ACM, New York, NY, USA, v. 3, n. 2, p. 145–159, May
1985. ISSN 0734-2071.

MCKEOWN, N.; ANDERSON, T.; BALAKRISHNAN, H.; PARULKAR, G.; PETERSON,
L.; REXFORD, J.; SHENKER, S.; TURNER, J. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review, ACM, v. 38, n. 2, p. 69–74,
2008. ISSN 0146-4833.

http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet

62

MIJUMBI, R.; SERRAT, J.; GORRICHO, J.; BOUTEN, N.; TURCK, F. D.; BOUTABA, R.
Network function virtualization: State-of-the-art and research challenges. Communications
Surveys Tutorials, IEEE, PP, n. 99, p. 1–1, 2015. ISSN 1553-877X.

NISHTALA, R.; FUGAL, H.; GRIMM, S.; KWIATKOWSKI, M.; LEE, H.; LI, H. C.; MCEL-
ROY, R.; PALECZNY, M.; PEEK, D.; SAAB, P.; STAFFORD, D.; TUNG, T.; VENKATARA-
MANI, V. Scaling memcache at facebook. In: Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation. Berkeley, CA, USA: USENIX Associa-
tion, 2013. (nsdi’13), p. 385–398.

Open Networking Foundation. Openflow switch specification, version 1.3.5. 2015.
Available at: <https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.3.5.pdf>. Last accessed: 30 Jan. 2016.

POSTEL, J. Transmission Control Protocol. IETF, 1981. RFC 793 (INTERNET STANDARD).
(Request for Comments, 793). Updated by RFCs 1122, 3168, 6093, 6528. Available at: <http:
//www.ietf.org/rfc/rfc793.txt>. Last accessed: 30 Jan. 2016.

QUOITIN, B. C-BGP Tutorial. 2016. Available at: <http://c-bgp.sourceforge.net/tutorial.php>.
Last accessed: 30 Jan. 2016.

RAINDEL, S.; BIRK, Y. Replicate and bundle (rnb) – a mechanism for relieving bottlenecks
in data centers. In: Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on. Boston, Massachusetts USA: [s.n.], 2013. p. 601–610. ISSN 1530-2075.

RAJASHEKHAR, M. Twemproxy: A fast, light-weight proxy for memcached. 2012. Avail-
able at: <https://blog.twitter.com/2012/twemproxy>. Last accessed: 30 Jan. 2016.

RATNASAMY, S.; FRANCIS, P.; HANDLEY, M.; KARP, R.; SHENKER, S. A scalable
content-addressable network. ACM SIGCOMM Computer Communication Review, ACM,
New York, NY, USA, v. 31, n. 4, p. 161–172, Aug 2001. ISSN 0146-4833.

RICART, G.; AGRAWALA, A. K. An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM, ACM, New York, NY, USA, v. 24, n. 1, p. 9–17, Jan
1981. ISSN 0001-0782.

RISSON, J.; MOORS, T. Survey of research towards robust peer-to-peer networks: Search
methods. Computer Networks, Elsevier North-Holland, Inc., New York, NY, USA, v. 50, n. 17,
p. 3485–3521, Dec 2006. ISSN 1389-1286.

ROWSTRON, A.; DRUSCHEL, P. Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. Middleware 2001: IFIP/ACM International Conference on
Distributed Systems Platforms, Springer Berlin Heidelberg, Heidelberg, Germany, p. 329–350,
Nov 2001.

SANFILIPPO, S.; NOORDHUIS, P. Redis. 2016. Available at: <http://redis.io/>. Last accessed:
30 Jan. 2016.

SHERWOOD, R.; GIBB, G.; YAP, K.-K.; APPENZELLER, G.; CASADO, M.; MCKEOWN,
N.; PARULKAR, G. Flowvisor: A network virtualization layer. OpenFlow Switch Consortium,
Tech. Report, 2009.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://c-bgp.sourceforge.net/tutorial.php
https://blog.twitter.com/2012/twemproxy
http://redis.io/

63

STOICA, I.; MORRIS, R.; KARGER, D.; KAASHOEK, M. F.; BALAKRISHNAN, H. Chord:
A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer
Communication Review, ACM, New York, NY, USA, v. 31, n. 4, p. 149–160, Aug 2001. ISSN
0146-4833.

SUMBALY, R.; KREPS, J.; GAO, L.; FEINBERG, A.; SOMAN, C.; SHAH, S. Serving large-
scale batch computed data with project voldemort. In: Proceedings of the 10th USENIX
Conference on File and Storage Technologies. Berkeley, CA, USA: USENIX Association,
2012. (FAST’12), p. 18–18.

SUZUKI, I.; KASAMI, T. A distributed mutual exclusion algorithm. ACM Transactions on
Computer Systems (TOCS), ACM, New York, NY, USA, v. 3, n. 4, p. 344–349, Nov 1985.
ISSN 0734-2071.

TAVAKOLI, A.; CASADO, M.; KOPONEN, T.; SHENKER, S. Applying NOX to the Datacenter.
In: Proceedings of workshop on Hot Topics in Networks (HotNets-VIII). New York, NY,
USA: [s.n.], 2009.

TRAJANO, A. F. R.; FERNANDEZ, M. P. Two-Phase Load Balancing of In-Memory Key-
Value Storages Through NFV and SDN. In: 2015 IEEE Symposium on Computers and
Communication (ISCC). Larnaca, Cyprus: IEEE, 2015. p. 409–414.

TRAJANO, A. F. R.; FERNANDEZ, M. P. uLoBal: Enabling In-Network Load Balancing for
Arbitrary Internet Services on SDN. In: ICN 2016: The Fifteenth International Conference
on Networks. Lisbon, Portugal: IARIA, 2016. p. 62–67. ISBN 978-1-61208-450-3.

WANG, R.; BUTNARIU, D.; REXFORD, J. et al. Openflow-based server load balancing gone
wild. In: Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE 2011). Boston, MA, USA: [s.n.], 2011.

XU, Y.; FRACHTENBERG, E.; JIANG, S.; PALECZNY, M. Characterizing facebook’s mem-
cached workload. Internet Computing, IEEE, v. 18, n. 2, p. 41–49, Mar 2014. ISSN 1089-7801.

ZHANG, W.; WOOD, T.; RAMAKRISHNAN, K.; HWANG, J. Smartswitch: Blurring the
line between network infrastructure & cloud applications. In: 6th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 14). Philadelphia, PA: USENIX Association, 2014.

ZHAO, B.; HUANG, L.; STRIBLING, J.; RHEA, S.; JOSEPH, A.; KUBIATOWICZ, J. Tapestry:
a resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications, v. 22, n. 1, p. 41–53, Jan 2004. ISSN 0733-8716.

	Title page
	Agradecimentos
	Resumo
	Abstract
	List of symbols
	Sumário
	Introduction
	Proposal
	Contributions
	Work Structure

	Background
	Software-Defined Networking
	Network Function Virtualization
	Consistent Hashing
	In-memory Key-Value Storages

	Related Works
	Load Balancing on Software-Defined Networks
	Load Balancing of In-Memory Key-Value Storages

	Two-Phase Load Balancing of IMKVS Caches
	uLoBal: Enabling Generic Load Balancing on SDN
	Management Module
	Network Monitoring Module
	Load Balancer Module

	kvsKeeper: On the Load Balancing of IMKVS
	Architectural Components
	Index
	Dispatcher Module
	Replication Module

	Evaluation
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusion and Future Work
	Bibliography

